ORIGINAL ARTICLE

In vivo targeting of HER2-positive tumor using 2-helix affibody molecules

Gang Ren · Jack M. Webster · Zhe Liu · Rong Zhang · Zheng Miao · Hongguang Liu · Sanjiv S. Gambhir · Faisal A. Syud · Zhen Cheng

Received: 26 February 2011/Accepted: 19 September 2011/Published online: 8 October 2011 © Springer-Verlag 2011

Abstract Molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression has drawn significant attention because of the unique role of the HER2 gene in diagnosis, therapy and prognosis of human breast cancer. In our previous research, a novel cyclic 2-helix small protein, MUT-DS, was discovered as an anti-HER2 Affibody analog with high affinity through rational protein design and engineering. MUT-DS was then evaluated for positron emission tomography (PET) of HER2-positive tumor by labeling with two radionuclides, ⁶⁸Ga and ¹⁸F, with relatively short half-life ($t_{1/2} < 2$ h). In order to fully study the in vivo behavior of 2-helix small protein and demonstrate that it could be a robust platform for labeling with a variety of radionuclides for different applications, in this study, MUT-DS was further radiolabeled with ⁶⁴Cu or ¹¹¹In and evaluated for in vivo targeting of HER2-positive tumor in mice. Design 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated MUT-DS (DOTA-MUT-DS) was chemically synthesized using solid phase peptide synthesizer and I2 oxidation. DOTA-MUT-

G. Ren · Z. Liu · Z. Miao · H. Liu · S. S. Gambhir · Z. Cheng Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California,

J. M. Webster · R. Zhang · F. A. Syud General Electric Company, Global Research Center, Niskayuna, NY 12309, USA

Z. Cheng (⊠) Molecular Imaging Program at Stanford, Departments of Radiology, Stanford University, 1201 Welch Road, Lucas Expansion, P020A, Stanford, CA 94305, USA e-mail: zcheng@stanford.edu

Stanford, CA 94305-5344, USA

DS was then radiolabeled with ⁶⁴Cu or ¹¹¹In to prepare the HER2 imaging probe (64Cu/111In-DOTA-MUT-DS). Both biodistribution and microPET imaging of the probe were evaluated in nude mice bearing subcutaneous HER2-positive SKOV3 tumors. DOTA-MUT-DS could be successfully synthesized and radiolabeled with ⁶⁴Cu or ¹¹¹In. Biodistribution study showed that tumor uptake value of 64 Cu or 111 In-labeled DOTA–MUT-DS was 4.66 \pm 0.38 or $2.17 \pm 0.15\%$ ID/g, respectively, in nude mice bearing SKOV3 xenografts (n = 3) at 1 h post-injection (p.i.). Tumor-to-blood and tumor-to-muscle ratios for ⁶⁴Cu-DOTA-MUT-DS were attained to be 3.05 and 3.48 at 1 h p.i., respectively, while for 111 In-DOTA-MUT-DS, they were 2.04 and 3.19, respectively. Co-injection of the cold Affibody molecule Z_{HER2:342} with ⁶⁴Cu-DOTA-MUT-DS specifically reduced the SKOV3 tumor uptake of the probe by 48%. 111 In-DOTA-MUT-DS displayed lower liver uptake at all the time points investigated and higher tumor to blood ratios at 4 and 20 h p.i., when compared with ⁶⁴Cu-DOTA-MUT-DS. This study demonstrates that the 2-helix protein based probes. ⁶⁴Cu/¹¹¹In DOTA-MUT-DS. are promising molecular probes for imaging HER2-positive tumor. Two-helix small protein scaffold holds great promise as a novel and robust platform for imaging and therapy applications.

Keywords Affibody · HER2 · PET · Molecular imaging · ¹¹¹In · ⁶⁴Cu

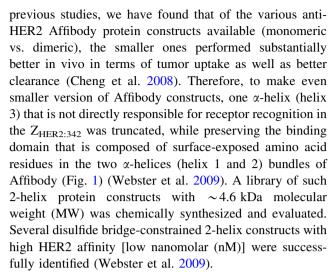
Abbreviations

1,4,7,10-tetraazacyclododecane-1,4,7,10-**DOTA**

tetraacetic acid

PET Positron emission tomography

Single photon emission computed tomography **SPECT HPLC** High-performance liquid chromatography


p.i. PostinjectionMW Molecular weight

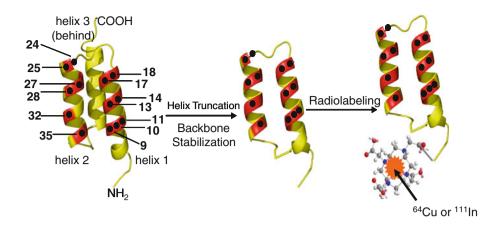
OSEM Ordered subsets expectation maximum

Introduction

The epidermal growth factor receptor (EGFR) family is a group of receptor tyrosine kinases (RTKs) which have been shown to be key regulators of many cellular events, making them important targets in cancer research (Ciardiello and Tortora 2008; Yarden and Shilo 2007). Of the four members of the EGFR family, human epidermal growth factor receptor type 2 (HER2) is a well-established tumor biomarker over-expressed in a wide variety of cancers including breast, ovarian, lung, gastric, oral and urogenital cancers (Glisson et al. 2004; Mitra et al. 1994; Swanton et al. 2006; Yeh et al. 1999; Engel and Kaklamani 2007; Nanda 2007). HER2-targeted therapy using Herceptin and/or combination with conventional therapeutic regimens has shown significant benefits in breast cancer patients (Harries and Smith 2002; Lazaridis et al. 2008; Tokuda et al. 2009). HER2 has great value as a molecular target for therapeutic intervention. Moreover, HER2 is an important prognostic indicator of cancer patients (Gravalos and Jimeno 2008; Ferretti et al. 2007; Serrano-Olvera et al. 2006).

Antibody-based radionuclide imaging has been extensively investigated to monitor HER2 status and relevance to therapy. Radiolabeled Herceptin has shown promise in noninvasive evaluation of HER2 expression in vivo (Niu et al. 2009; Tang et al. 2005; Dijkers et al. 2009; Smith-Jones et al. 2004). However, Herceptin is a large protein and may not be ideal for PET imaging because of its slow clearance and tumor-targeting ability. Affibody protein which binds to a different epitope on HER2 may be a more suitable imaging candidate for the purpose of in vivo monitoring of HER2 expression (Orlova et al. 2009; McLarty et al. 2009a). Additionally, Affibody proteinbased molecular imaging technology has shown great advantages over antibodies because of the short blood circulation and rapid and excellent tumor uptake of Affibody molecules (Tolmachev 2008). Affibody molecules are engineered non-immunogenic small proteins with 58-amino acid residues (~7 kDa) and a 3-helix bundle structure (Nygren 2008; Nygren and Skerra 2004; Tolmachev et al. 2007a). HER2-binding Affibody molecules with picomolar affinity have been identified and investigated as therapeutic and imaging agents for HER2-overexpressing malignant tumors (Orlova et al. 2009; McLarty et al. 2009b; Kramer-Marek et al. 2009; Wallberg et al. 2009; Tran et al. 2007; Tolmachev et al. 2006, 2009; Orlova et al. 2006; Cheng et al. 2008; Ahlgren et al. 2009). In our

The small size and high HER2-binding affinities of these 2-helix proteins encouraged us to further evaluate their potential use for in vivo molecular imaging of tumors. One cyclic 2-helix small protein with 5 nM HER2-binding affinity was then selected and conjugated with 1,4,7,10tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to obtain a bioconjugate DOTA-MUT-DS [sequence: VENK (homoC)NKEMR NRYWEAALDPNLNNQQKRAKIRSI YDDP(homoC)-NH₂, a disulfide bridge was formed between two homo-cysteine residues]. In previous research, PET radionuclides with relative short half-life, ⁶⁸Ga ($t_{1/2} = 67.7 \text{ min}$) and ¹⁸F ($t_{1/2} = 109.8 \text{ min}$) were used to label MUT-DS for HER2 PET imaging (Ren et al. 2009; Miao et al. 2011). In order to fully study the in vivo behavior of 2-helix small protein and demonstrate that it could be a robust platform for labeling with a variety of radionuclides for different applications, in this study, MUT-DS was further radiolabeled with $(t_{1/2} = 12.7 \text{ h})$ or ¹¹¹In $(t_{1/2} = 2.8 \text{ d})$ and evaluated for in vivo targeting of HER2-positive tumor in mice.


Materials and methods

General

The anti-HER2 Affibody molecule Z_{HER2:477} was purchased from Affibody AB (Bromma, Sweden). DOTA-tri-*tert*-butyl ester was obtained from Macrocyclics Inc. (Dallas, TX, USA). (S)-2-(Fmoc-amino)-4-tritylsulfanyl-butyric acid (Fmoc–HomoCys(Trt)-OH) was purchased from Bachem Bioscience, Inc (King of Prussia, PA, USA). All other N-α-Fmoc-protected amino acids were purchased from Advanced Chemtech (Louisville, KY, USA). Dimethylformamide (DMF) and methylene chloride were from Fisher Scientific (Fair Lawn, NJ, USA). Piperidine (20%) in DMF and 0.4 M of *N*-methylmorpholine (NMM) in DMF were

Fig. 1 3-Helix Affibody and 2-helix protein scaffold-based PET probes for HER2 imaging. The *black dots* indicate the amino acid residues responsible for receptor binding

from Protein Technologies Inc. (Tucson, AZ, USA). Tri-(TFA), O-benzotriazole-N, N, N', N'fluoroacetic acid tetramethyluronium hexafluorophosphate (HBTU), and 4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)-phenoxy resin (Rink amide resin LS, 100-200 mesh, 1% DVB, 0.2 mmol/g) were from Advanced Chemtech. Pyridine, acetic anhydride, acetic acid, and anhydrous ether were from J.T.Baker (Phillipsburg, NJ, USA). Triisopropylsilane (TIPS) and 1, 2-ethanedithiol (EDT) were purchased from Aldrich (Milwaukee, WI, USA). High-performance liquid chromatography (HPLC) grade acetonitrile (CH₃CN) and Millipore 18 m Ω water were used for peptide purifications. All other standard synthesis reagents were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The radionuclide 111 In was purchased from Perkin Elmer (Waltham, MA, USA) while ⁶⁴Cu was provided by the Department of Medical Physics, University of Wisconsin at Madison (Madison, WI, USA). All the other general materials (cell lines, mice, etc.) and instruments (reverse phase HPLC, radioactive dose calibrator, Mass spectrometer) are the same as that previously reported (Cheng et al. 2008).

Synthesis of DOTA-MUT-DS

Synthesis of the cyclic 2-helix small protein, DOTA–MUT-DS, was the same as described in our previous reports (Webster et al. 2009). Briefly, peptide was synthesized using standard solid-phase peptide synthesizer (Fmoc chemistry). Then the linear peptide was cyclized by I₂ oxidation of the two homo-cysteines. Both crude linear and cyclic peptides were purified by a reversed-phase preparative HPLC with a protein and peptide C4 column (Vydac, Hesperia, CA, USA). The identity of the target peptides was confirmed by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI–TOF–MS, model: Perseptive Voyager-DE RP Biospectrometer) (Framingham, MA, USA) or an electrospray ionization time of flight mass spectrometer (ESI-TOF–MS, model: JMS-T100LC) (JEOL, Tokyo, Japan).

Radiochemistry

DOTA-MUT-DS was radiolabeled with ⁶⁴Cu or ¹¹¹In by addition of 111 MBq (3 mCi) ⁶⁴CuCl₂ or ¹¹¹InCl₃ (1 µg of peptide per 5.6 MBq radioactive material) in NaOAc (for ⁶⁴Cu) or NH₄OAc (for ¹¹¹In) buffer (0.1 N, pH 5.5) followed by a 40-min incubation at 40°C (for ⁶⁴Cu) or 80°C (for ¹¹¹In), respectively. The radiolabeled complex was then purified by a PD-10 column (GE Healthcare, Piscataway, NJ, USA). The product was washed out by phosphate-buffered saline (PBS) and passed through a 0.22 µm Millipore filter into a sterile vial for in vitro and animal experiments. Radioanalytical HPLC was used to analyze the purified ⁶⁴Cu or ¹¹¹In-labeled-DOTA-MUT-DS. The flow rate was 1 mL/min, with the mobile phase starting from 95% solvent A (H₂O/0.1%TFA) and 5% solvent B (CH₃CN/0.1%TFA) (0-3 min) to 35% solvent A and 65% solvent B at 33 min, then going to 15% solvent A and 85% solvent B (33-36 min), maintaining this solvent composition for another 3 min (36–39 min) and returning to initial solvent composition by 42 min.

Serum stability

 64 Cu/ 111 In-DOTA–MUT-DS (370 kBq) in 50 μL of PBS was added to 500 μL of mouse serum (Sigma, St. Louis, MO, USA). After incubation at 37°C for 1 h, the solution was analyzed by thin layer chromatography (TLC). The developing solution was 50% $\rm H_2O/50\%$ CH₃CN.

SKOV3 tumor xenografts

SKOV3 cells were harvested and 3×10^6 cells were diluted in 100 μ L of PBS then subcutaneously implanted into the right upper shoulder of 6- to 7-week-old female nu/nu mouse (Charles River, Wilmington, MA, USA). Tumors were allowed to grow to a size of 500–750 mg (2–3 weeks), and the tumor-bearing mice were subjected to in vivo biodistribution and imaging studies.

Biodistribution studies

SKOV3 tumor-bearing mice (n = 3 for each group) were injected with ⁶⁴Cu-DOTA-MUT-DS (0.69–1.01 MBa. 18.7–27.4 μCi, 0.58–0.86 μg) or ¹¹¹In-DOTA–MUT-DS $(0.26-0.3 \text{ MBq}, 7-8 \mu\text{Ci}, 0.12 \mu\text{g})$ through the tail vein and killed at 1, 4 and 20 h post-injection (p.i.). For a blocking study, another group of SKOV3 tumor-bearing mice (n = 3) were co-injected with 300 µg unlabeled Z_{HER2:477} in PBS containing 2% bovine albumin serum (Invitrogen, Carlsbad, CA, USA) and killed at 4 h p.i.. Tumor and normal tissues of interest were excised and weighed, and their radio activity was measured in a Wallac 1480 automated counter (Perkin Elmer, MA, USA). The radioactivity uptake in the tumor and normal tissues was expressed as a percentage of the injected radioactive dose per gram of tissue (% ID/g). The ratio of tumor to blood (T/B) and tumor to muscle (T/M) were determined based upon % ID/g.

MicroPET imaging

PET imaging of tumor-bearing mice was performed on a microPET R4 rodent model scanner (Concord Microsystem, Knoxville, TN). The mice bearing SKOV3 tumors were injected with $^{64}\text{Cu-DOTA-MUT-DS}$ (1 MBq, 27 µCi, 0.9 µg) via the tail vein. For another group of mice bearing SKOV3 tumors (n=3), each mouse was coinjected with the same activity of probe and 300 µg of non-radiolabeled $Z_{\text{HER2:477}}$. At different times p.i. (0.5, 1, 2, 4 and 20 h), the mice were anesthetized with 2% isofluorane and placed in the prone position and the center of the filed of view of microPET. The 5-min static scans were obtained and the images were reconstructed by a two-dimensional ordered-subset expectation maximum (OSEM) algorithm.

Statistical methods

Statistical analysis was performed using the Student's t test for unpaired data. A 95% confidence level was chosen to determine the significance between groups, with P < 0.05 being significantly different.

Results

Chemistry and radiochemistry

DOTA–MUT-DS was successfully synthesized using standard peptide synthesis chemistry and I_2 oxidation ($[M + H]^+$, $C_{218}H_{352}N_{69}O_{69}S_3$, expected MW: 5136.77;

measured: 5136.53). The synthetic yield for the 2-helix Affibody analog is usually $\sim 10\%$ with over 95% chemical purity. The peptide was then radiolabeled with ^{64}Cu or ^{111}In . The purification of radiolabeling solution, using a PD-10 column, afforded $^{64}\text{Cu}/^{111}\text{In-DOTA-MUT-DS}$ with >95% radiochemical purity with modest specific activity 3.98–6.83 MBq/nmol (21–36 $\mu\text{Ci/}\mu\text{g}$). HPLC analysis of $^{64}\text{Cu-MUT-DS}$ and $^{111}\text{In-DOTA-MUT-DS}$ both showed its retention time is 20 min. Further mouse serum stability study demonstrated that over 95% radiolabeled complex of $^{64}\text{Cu}/^{111}\text{In-DOTA-MUT-DS}$ remained labeled product after 1 h incubation at 37°C.

Biodistribution studies

Biodistribution results for ⁶⁴Cu-DOTA-MUT-DS at 1, 4 and 20 h p.i. were summarized in Table 1. Rapid and high activity accumulation in the SKOV3 tumors was observed at early time points (4.66 \pm 0.38%ID/g at 1 h p.i.). Tumor uptake slightly reduced to $3.34 \pm 0.89\%$ ID/g at 4 h; then the activity was slowly washed out from the tumor and reached 2.13 \pm 1.11%ID/g over 20 h (Table 1). The blood uptake was $1.54 \pm 0.18\%$ ID/g at 1 h p.i., while it remained for $1.1 \pm 0.02\%$ ID/g at 20 h p.i. The tumor to blood ratio could attain around 3.05 \pm 0.3 at 1 h p.i. and decreased over 20-h periods. While tumor to muscle ratio continued to increase from 3.48 \pm 0.53 at 1 h p.i. to 5.56 \pm 2.15 at 4 h p.i. Very high renal uptake and was found for the probe with $254.2 \pm 19.1\%ID/g$ at 1 h and the activity was washed out and reached 24.97 \pm 8.03 at 20 h p.i. The liver uptake was 27.76 ± 6.4 and $13.39 \pm 3.65\% ID/g$ at 1 and 20 h p.i., respectively (Table 1). Specificity of the probe was then examined in a separate group of mice (n = 3); the co-injection of 300 µg of unlabeled Z_{HER2:477} significantly reduced the tumor uptake from 3.34 ± 0.89 to $1.76 \pm 0.12\%$ ID/g at 4 h p.i. (P < 0.05), with 48.2% inhibition (Fig. 2). Though liver uptake also decreased from 20.25 ± 5.77 to 12.27 ± 2.2 while kidney uptake increased from 137.7 \pm 17.3 to 214.2 \pm 48.5 at 4 h p.i., they were not significantly different compared with nonblocking group (P > 0.05) (Table 1).

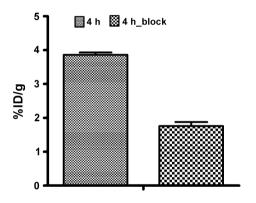

Interestingly, in vivo biodistribution of $^{111}\text{In-DOTA-MUT-DS}$ showed some difference from the $^{64}\text{Cu-labeled}$ one (Table 2). The tumor uptake reached comparable level as that of $^{64}\text{Cu-DOTA-MUT-DS}$, but the blood clearance was faster (1.06 \pm 0.13%ID/g at 1 h while only 0.18 \pm 0.02%ID/g at 20 h p.i.) when compared with $^{64}\text{Cu-DOTA-MUT-DS}$. Thus the tumor to blood ratio for $^{111}\text{In-DOTA-MUT-DS}$ reached 9.57 \pm 0.93 at 20 h p.i. Both the liver and intestine uptakes for $^{111}\text{In-DOTA-MUT-DS}$ were significantly lower than that of $^{64}\text{Cu-DOTA-MUT-DS}$ at all time points (P < 0.05).

Table 1 Biodistribution data for 2-helix ⁶⁴Cu-DOTA–MUT-DS with or without co-injection of large excess of unlabeled Z_{HER2:477} in nude mice bearing subcutaneously xenotransplanted SKOV3 human ovarian cancer

Organ (%ID/g)	1 h	4 h	4 h block	20 h
Tumor	4.66 ± 0.38	3.34 ± 0.89*	1.76 ± 0.12	2.13 ± 1.11
Blood	1.54 ± 0.18	1.74 ± 0.54	1.34 ± 0.30	1.10 ± 0.02
Heart	1.95 ± 0.19	1.98 ± 0.26	2.05 ± 0.40	2.23 ± 0.69
Liver	27.76 ± 6.4	20.25 ± 5.77	12.27 ± 2.19	13.39 ± 3.65
Lung	4.90 ± 1.28	3.56 ± 1.04	5.49 ± 1.20	2.92 ± 0.55
Muscle	1.35 ± 0.09	0.63 ± 0.11	0.75 ± 0.12	0.62 ± 0.27
Spleen	9.12 ± 0.98	2.73 ± 0.80	2.65 ± 0.74	2.81 ± 1.30
Brain	0.34 ± 0.11	0.22 ± 0.07	0.30 ± 0.07	0.28 ± 0.14
Intestine	4.46 ± 0.82	3.60 ± 1.30	3.42 ± 1.47	2.93 ± 0.82
Skin	1.36 ± 0.28	1.06 ± 0.21	1.40 ± 0.37	1.10 ± 0.28
Stomach	3.46 ± 1.24	3.37 ± 1.31	3.00 ± 0.44	2.50 ± 1.42
Pancreas	1.41 ± 0.40	1.47 ± 0.66	0.44 ± 0.20	0.92 ± 0.04
Bone	0.99 ± 0.34	0.62 ± 0.18	0.85 ± 0.13	0.67 ± 0.13
Kidney	254.2 ± 19.10	137.69 ± 17.27	214.18 ± 48.52	24.97 ± 8.03
Uptake ratio				
Tumor/Blood	3.05 ± 0.30	2.14 ± 1.05	1.36 ± 0.35	1.36 ± 0.04
Tumor/Muscle	3.48 ± 0.53	5.56 ± 2.15	2.39 ± 0.51	3.72 ± 1.65

Data are expressed as the percentage administered activity (injected dose) per gram of tissue (%ID/g) after intravenous injection of 0.69–1.01 MBq (18.7–27.4 μ Ci) probe at 1, 4, and 20 h p.i. (n=3) * P < 0.05, compared with 4 h block

Fig. 2 Tumor uptakes after co-injection of 300 μg of unlabeled $Z_{\rm HER2:477}$ at 4 h p.i. Tumor uptake was blocked by 48.2%. Data were expressed as the percentage administered activity (injected dose) per gram of tissue (%ID/g) after intravenous injection of ⁶⁴Cu-DOTA–MUT-DS at 4 h p.i. (n=3 for each group)

MicroPET imaging

Decay-corrected coronal microPET images of a mouse bearing SKOV3 tumor at 0.5, 1, 2, 4 and 20 h and a mouse injected with the probe and unlabeled $Z_{\rm HER2:477}$ are shown in Figs. 3, 4, respectively. For 64 Cu-DOTA–MUT-DS, SKOV3 tumor was clearly visualized with good tumor-to-background contrast from 0.5 to 20 h p.i. Liver activity was observable while high activity accumulation was particularly obvious in the kidney region, which was consistent with the findings from the biodistribution study. Furthermore, the co-injection of unlabeled Affibody $Z_{\rm HER2:477}$ significantly reduced the uptake of 64 Cu-DOTA–MUT-DS

in the tumor, resulting in a much lower tumor to background contrast in vivo (Fig. 4).

Discussion

A variety of radiolabeled Affibody molecules have been successfully demonstrated to be promising molecular probes for imaging HER2 expression in living subjects (Orlova et al. 2006, 2009; McLarty et al. 2009). ¹⁸F-labeled 3-helix Affibody dimer (Z_{HER2:477})₂ and monomer Z_{HER2:477} were recently evaluated in tumor-bearing mice by our group (Tolmachev et al. 2007). It was found that monomer showed much better in vivo pharmacokinetics such as higher tumor uptake and faster blood clearance than that of dimer, though it had lower in vitro HER2 binding affinity (Nygren and Skerra 2004). In this research, a cyclic 2-helix Affibody analog MUT-DS was selected for DOTA conjugation, radiolabeling with radiometals (⁶⁴Cu or ¹¹¹In) with longer half-life and microPET imaging. The potential advantages expected for smaller protein constructs include easy library generation for screening, economic viability, potentially low immunogenic potential, high specific tumor-targeting ability, fast tumor extravasation, and reasonable tumor accumulation and retention.

Biodistribution studies of ⁶⁴Cu or ¹¹¹In-labeled DOTA–MUT-DS were then performed to evaluate the in vivo behavior of the 2-helix small protein. Considering the relatively longer half-life of ⁶⁴Cu (12.7 h) compared with other PET probes such as ⁶⁸Ga or ¹⁸F, this study provides us more comprehensive profiles of the in vivo behaviors of

Table 2 Biodistribution data for 2-helix ¹¹¹In-DOTA–MUT-DS in nude mice bearing subcutaneously xenotransplanted SKOV3 human ovarian cancer

Organ (%ID/g)	1 h	4 h	20 h
Tumor	2.17 ± 0.51	3.41 ± 1.80	1.72 ± 0.22
Blood	1.06 ± 0.13	0.60 ± 0.06	0.18 ± 0.02
Heart	0.46 ± 0.11	0.41 ± 0.10	0.24 ± 0.08
Liver	10.24 ± 1.74	11.35 ± 1.54	8.69 ± 1.44
Lung	1.95 ± 0.67	1.21 ± 0.10	0.73 ± 0.25
Muscle	0.75 ± 0.25	0.69 ± 0.17	0.57 ± 0.15
Spleen	6.49 ± 1.17	5.10 ± 0.17	4.06 ± 0.09
Brain	0.14 ± 0.02	0.12 ± 0.01	0.10 ± 0.02
Intestine	0.36 ± 0.06	0.34 ± 0.04	0.48 ± 0.20
Skin	0.37 ± 0.14	0.38 ± 0.03	0.33 ± 0.06
Stomach	0.25 ± 0.05	0.25 ± 0.02	0.22 ± 0.05
Pancreas	0.28 ± 0.10	0.19 ± 0.02	0.20 ± 0.06
Bone	0.53 ± 0.19	0.39 ± 0.08	0.29 ± 0.05
Kidney	212.00 ± 48.23	254.67 ± 63.55	210.02 ± 31.95
Uptake ratio			
Tumor/Blood	2.04 ± 0.39	5.82 ± 2.56	9.57 ± 0.93
Tumor/Muscle	3.19 ± 1.45	4.45 ± 3.16	3.18 ± 0.78

Data are expressed as the percentage administered activity (injected dose) per gram of tissue (%ID/g) after intravenous injection of 0.26–0.3 MBq (7–8 μ Ci) probe at 1, 4, and 20 h p.i. (n=3)

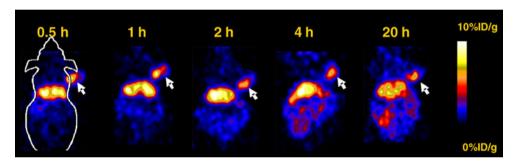


Fig. 3 Decay-corrected coronal microPET images of a nude mouse bearing SKOV3 (indicated by *white arrows*) at 0.5, 1, 2, 4 and 20 h after tail vein injection of ⁶⁴Cu-DOTA–MUT-DS

⁶⁴Cu-DOTA-MUT-DS. ¹¹¹In has an even longer half-life of 68 h and has been extensively utilized as a surrogate

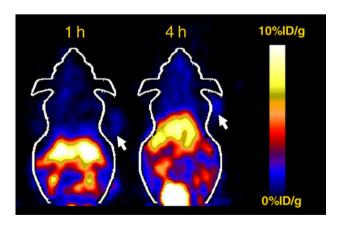


Fig. 4 Decay-corrected coronal microPET images of a nude mouse bearing SKOV3 which was co-injected with $Z_{HER2:477}\ (300\ \mu g)$ at 1 and 4 h p.i

isotope for ⁹⁰Y or ¹⁷⁷Lu, both of which are suitable for radionuclide therapy (Ellisonet al. (2010); McDevitt et al. 2007). With all these radiolabels, we may comprehensively evaluate 2-helix small protein as a novel platform for in vivo targeted imaging of HER2 expression.

It was found that 2-helix probes still preserved good in vivo tumor-targeting ability. The $^{64}\text{Cu-DOTA-MUT-DS}$ displayed 4.66 \pm 0.38, 3.34 \pm 0.89 and 2.13 \pm 1.13%ID/g SKOV3 tumor uptake at 1, 4 and 20 h, respectively (Table 1). The slightly higher tumor uptake at 1 h than that of 4 h suggests the rapid tumor-targeting ability of 2-helix probe, likely due to the small size of the protein. Meanwhile, compared with tumor uptake at 1 h, 46% of radio-activity still remained in tumor at 20 h p.i., indicating good tumor retention for $^{64}\text{Cu-DOTA-MUT-DS}$. Furthermore, the success of inhibition of the probe tumor uptake using the cold Affibody molecule $Z_{\text{HER2:477}}$ (3.34 \pm 0.89 vs. 1.76 \pm 0.12%ID/g, 4 h p.i., P < 0.05) proved the in vivo tumor-targeting specificity of the probe (Fig. 2).

In addition, reasonable tumor-to-blood and tumor-muscle ratios (3.05 and 3.48) were attained at 1 h p.i., suggesting ⁶⁴Cu-DOTA-MUT-DS can be used for tumor imaging. Lower tumor-to-blood ratio (1.36) was achieved at 20 h, mainly because of the relatively high activity residue in the blood. But good tumor-to-muscle ratio (3.72) at 20 h still warrants the good tumor imaging quality (Fig. 3). High uptake in liver and moderate uptake in intestines were also observed, indicating that the probe was partially cleared through hepatobiliary system. This is also caused by the low in vivo stability of ⁶⁴Cu–DOTA complex (Boswell et al. 2004). The in vivo tumor imaging ability of ⁶⁴Cu-DOTA-MUT-DS was further examined using SKOV3 tumor mice and microPET imaging. Excellent tumor to background contrast was obtained as early as 30 min after intravenous injection of the probe (Fig. 4), confirming the fast tumor targeting and clearance of the 2-helix protein. Good tumor localization and contrast were also observed at 20 h p.i.: consistent with the finding obtained in biodistribution study. Similarly, SKOV3 tumors were not visible in the mice with co-injection of cold Affibody molecules (Fig. 4), suggesting good specificity of the probe in vivo.

DOTA is the most commonly used chelator for radiometal labeling. However, considering of some potential limitations of using DOTA as chelators for ⁶⁴Cu labeling, we also used ¹¹¹In to label the small protein and tested the biodistribution of ¹¹¹In-DOTA-MUT-DS (Boswell et al. 2004; Prasanphanich et al. 2007). Different from what we observed for 64Cu-DOTA-MUT-DS, 111In-DOTA-MUT-DS showed much lower liver and intestine uptakes in vivo. This is likely resulted from the higher stability of ¹¹¹Inlabeled peptides. When compared with 64Cu-DOTA-MUT-DS, the blood clearance of ¹¹¹In-DOTA-MUT-DS was faster; thus, a higher tumor to blood ratios could be attained at later time points. For example, the tumor to blood ratio for 111 In-DOTA-MUT-DS was about 9.57 at 20 h, which ensures the feasibilities of using ¹¹¹In-DOTA– MUT-DS for single photon emission computed tomography (SPECT) imaging of HER2 expression in vivo.

well as emits both therapeutic Auger and internal conversion electrons (Capello et al. 2003); thus, radionuclide therapeutic potential of MUT-DS could also be evaluated when using ¹¹¹In as a radiolabel. In this study, the ¹¹¹Inlabeled MUT-DS shows good tumor uptakes and retention; thus, it does have potential for HER2-targeted radionuclide therapies. Some other strategies such as including a human serum albumin (HSA)-binding domain or HSA itself to 2-helix protein were also under investigation to optimize the radiocomplexes for radionuclide therapy purpose (Andersen et al. 2011; Tolmachev et al. 2007b).

Many reports have demonstrated that radiometal-labeled 3-helix Affibody molecules displayed high kidney uptake

and retention, which may limit their applications for tumor imaging and treatment, especially when Affibody is labeled with therapeutic radionuclides (Tolmachev et al. 2006, 2007b; Wallberg and Orlova 2008; Ekblad et al. 2008). Very high kidney uptake was also observed for ⁶⁴Cu or ¹¹¹In-DOTA–MUT-DS. The extremely high kidney uptake value for both radioconjugates suggested that the clearance of the radiometal-labeled 2-helix protein is mainly through kidney-urinary system. Our results indicate that the problem caused by high kidney uptake of Affibody protein could not be alleviated by simply reducing the size of the protein through truncating one alpha-helix (SANLLAEAKKLNDAQAPK). It is most likely that the amino acid residues presenting in the helix 1 and 2 of the Affibody (Fig. 1) and the DOTA chelator contribute to the high kidney uptake of radiometal-labeled Affibody molecules. More studies are needed to understand the mechanism of the globular filtration and tubular reabsorption towards this particular class of proteins, in order to further optimize the probe for clinical translation. Several strategies established in the peptide/antibody-based imaging field may also be explored to reduce the high kidney uptake. First, different amino acid sequences, linker systems and chelators can be used to modulate the surface charge, lipophilicity and binding affinity of the protein; second, co-injection of cold amino acids such as lysine; and third, nonresidulized radioisotopes such as radiohalogens can also be used (Tolmachev et al. 2007b; Ekblad et al. 2008; Gotthardt et al. 2007).

Conclusion

A 2-helix Affibody analog has been successfully synthesized. Radiolabeled 2- helix small protein shows good in vitro stability and in vivo tumor-targeting ability. Biodistribution and microPET imaging studies further demonstrate that ⁶⁴Cu/¹¹¹In-labeled 2-helix DOTA–MUT-DS are promising molecular probes for imaging HER2-positive tumor in living mice. Strategies to further optimize the biodistribution of the 2-helix proteins and 2-helix molecules against other targets are also under active investigation in our laboratories. Overall, the 2-helix small protein scaffold holds great promise as a novel platform that will likely be used for many imaging and therapy applications.

Acknowledgments This work was supported, in part, by California Breast Cancer Research Program 14IB-0091 (ZC) and SNM Pilot Research Grant (ZC), Medical Diagnostics, GE Healthcare, and National Cancer Institute (NCI) Small Animal Imaging Resource Program (SAIRP) grant R24 CA93862. We also thank Dr. Joshua Hoerner, Gregory Goddard and Hans Grade of GE Global Research for MS analysis and Dr. Alex Gibson of GE Healthcare for their helpful suggestion and reviewing of the manuscript.

References

- Ahlgren S, Wallberg H, Tran TA, Widstrom C, Hjertman M, Abrahmsen L et al (2009) Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 50:781–789
- Andersen JT, Pehrson R, Tolmachev V, Bekele MD, Abrahmsen L, Ekblad C (2011) Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin binding domain (ABD). J Biol Chem
- Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL et al (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 47:1465–1474
- Capello A, Krenning EP, Breeman WA, Bernard BF, de Jong M (2003) Peptide receptor radionuclide therapy in vitro using [111In-DTPA0]octreotide. J Nucl Med 44:98–104
- Cheng Z, De Jesus O, Namavari M, De A, Levi J, Webster J et al (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific ¹⁸F-labeled protein scaffold molecules. J Nucl Med 49:804–813
- Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358:1160–1174
- Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J et al (2009) Development and characterization of clinicalgrade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 50:974–981
- Ekblad T, Tran T, Orlova A, Widstrom C, Feldwisch J, Abrahmsen L et al (2008) Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging 35:2245–2255
- Ellison D, Kaufman J, Mather SJ (2010) Automated radiolabelling of monoclonal antibodies with the Modular Lab system. Nucl Med Commun 31:173–177
- Engel RH, Kaklamani VG (2007) HER2-positive breast cancer: current and future treatment strategies. Drugs 67:1329–1341
- Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F (2007) HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol 19:56–62
- Glisson B, Colevas AD, Haddad R, Krane J, El-Naggar A, Kies M et al (2004) HER2 expression in salivary gland carcinomas: dependence on histological subtype. Clin Cancer Res 10:944–946
- Gotthardt M, van Eerd-Vismale J, Oyen WJ, de Jong M, Zhang H, Rolleman E et al (2007) Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 48:596–601
- Gravalos C, Jimeno A (2008) HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 19:1523–1529
- Harries M, Smith I (2002) The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 9:75–85
- Kramer-Marek G, Kiesewetter DO, Capala J (2009) Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules. J Nucl Med 50:1131–1139
- Lazaridis G, Pentheroudakis G, Pavlidis N (2008) Integrating trastuzumab in the neoadjuvant treatment of primary breast cancer: accumulating evidence of efficacy, synergy and safety. Crit Rev Oncol Hematol 66:31–41
- McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C et al (2007) PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2:e907
- McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ et al (2009) Micro-SPECT/CT with 111In-DTPA-pertuzumab

- sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med
- McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ et al (2009b) Micro-SPECT/CT with 111In-DTPApertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med 50:1340–1348
- Miao Z, Ren G, Liu H, Jiang L, Webster JM, Zhang R et al (2011) A
 Novel 18F-Labeled 2-Helix Small Protein for PET Imaging of
 HER2 Positive Tumor. Eur J Nucl Med Mol Imaging
 (Submitted)
- Mitra AB, Murty VV, Pratap M, Sodhani P, Chaganti RS (1994) ERBB2 (HER2/neu) oncogene is frequently amplified in squamous cell carcinoma of the uterine cervix. Cancer Res 54:637–639
- Nanda R (2007) Targeting the human epidermal growth factor receptor 2 (HER2) in the treatment of breast cancer: recent advances and future directions. Rev Recent Clin Trials 2:111-116
- Niu G, Li Z, Cao Q, Chen X (2009) Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging 36:1510–1519
- Nygren PA (2008) Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. Febs J 275:2668–2676
- Nygren PA, Skerra A (2004) Binding proteins from alternative scaffolds. J Immunol Methods 290:3–28
- Orlova A, Magnusson M, Eriksson T, Nilsson M, Larsson B, Hoiden-Guthenberg I et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348
- Orlova A, Wallberg H, Stone-Elander S, Tolmachev V (2009) On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 50:417–425
- Prasanphanich AF, Nanda PK, Rold TL, Ma L, Lewis MR, Garrison JC et al (2007) [64Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA 104:12462–12467
- Ren G, Zhang R, Liu Z, Webster JM, Miao Z, Gambhir SS et al (2009) A 2-helix small protein labeled with 68 Ga for PET imaging of HER2 expression. J Nucl Med 50:1492–1499
- Serrano-Olvera A, Duenas-Gonzalez A, Gallardo-Rincon D, Candelaria M, De la Garza-Salazar J (2006) Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer. Cancer Treat Rev 32:180–190
- Smith-Jones P, Solit D, Akhurst T, Afroze F, Rosen N, Larson S (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706
- Swanton C, Futreal A, Eisen T (2006) Her2-targeted therapies in nonsmall cell lung cancer. Clin Cancer Res 12:4377s–4383s
- Tang Y, Wang J, Scollard D, Mondal H, Holloway C, Kahn H et al (2005) Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using (111)In-trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 32:51–58
- Tokuda Y, Suzuki Y, Saito Y, Umemura S (2009) The role of trastuzumab in the management of HER2-positive metastatic breast cancer: an updated review. Breast Cancer
- Tolmachev V (2008) Imaging of HER-2 overexpression in tumors for guiding therapy. Curr Pharm Des 14:2999–3019

- Tolmachev V, Nilsson F, Widstrom C, Andersson K, Rosik D, Gedda L et al (2006) ¹¹¹In-benzyl-DTPA-Z_{HER2:342}, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 47:846–853
- Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L (2007a) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568
- Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K et al (2007b) Radionuclide therapy of HER2-positive microxenografts using a ¹⁷⁷Lu-labeled HER2-specific Affibody molecule. Cancer Res 67:2773–2782
- Tolmachev V, Friedman M, Sandstrom M, Eriksson T, Rosik D, Hodik M et al (2009) Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry. J Nucl Med 50:274–283
- Tran T, Engfeldt T, Orlova A, Sandstrom M, Feldwisch J, Abrahmsen L et al (2007) ^{99m}Tc-maEEE-Z_{HER2:342}, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 18:1956–1964

- Wallberg H, Orlova A (2008) Slow internalization of anti-HER2 synthetic affibody monomer ¹¹¹In-DOTA-Z_{HER2:342-pep2}: implications for development of labeled tracers. Cancer Biother Radiopharm 23:435–442
- Wallberg H, Ahlgren S, Widstrom C, Orlova A (2009) Evaluation of the radiocobalt-labeled [MMA-DOTA-Cys61]-Z HER2:2395 (-Cys) affibody molecule for targeting of HER2-expressing tumors. Mol Imaging Biol 12:54–62
- Webster JM, Zhang R, Gambhir SS, Cheng Z, Syud FA (2009) Engineered two-helix small proteins for molecular recognition. Chembiochem 10:1293–1296
- Yarden Y, Shilo BZ (2007) SnapShot: EGFR signaling pathway. Cell 131:1018
- Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96:5458–5463

